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Abstract

Terrestrial manipulators with more dof than the dimension of the workspace
and space manipulators with as many manipulator dof as the dimension of
the workspace are both redundant systems. An interesting problem of such
redundant systems has been the repeatability problem due to the presence of
nonholonomic constraints. We show in this paper, contrary to the existing
belief, that integrability of the nonholonomic constraints is not a necessary
condition for the repeatability of the configuration variables. There exist
certain trajectories in the independent configuration variable space that are
like “holonomic loops” along which the redundant manipulators exhibit
repeatable motion. In this paper we present a simple method based on
optimization techniques for designing repeatable trajectories for free-flying
space manipulators and terrestrial redundant manipulators under
pseudoinverse control. ,

*A part of this paper was accepted for publication in the 1994 IEEE International Conference
on Robotics and Automation.




1. Introduction

An important problem of kinematically redundant robot manipulators has been the
repeatability problem under pseudoinverse control. ‘This problem was initially observed and
analyzed by Klein and Huang {7] where resolved motion rate control {22] using the Jacobian
pseudoinverse was noticed to result in nonrepeatable joint motion. As an alternative to the
pseudoinverse control, Baillieul [2) proposed the extended Jacobian technique that lifted
closed end-effector paths to closed joint paths. Later, Seraji [15] proposed the configuration
control technique that also resulted in repeatable joint motion. The key idea behind the
extended Jacobian technique was to add enough independent additional constraints to the
motion of the manipulator so that the rectangular Jacobian of the redundant manipulator
could be converted into a square Jacobian of full rank. When the additional constraints
that are imposed upon the motion of the redundant manipulator are holonomic in nature,
the full rank square Jacobian guarantees repeatability in the joint motion.

Though the pseudoinverse control does not produce repeatable joint motion in general,
it is fundamentally similar to the extended Jacobian technique in the sense that it is also a
form of constrained motion. For a redundant manipulator with n degrees of freedom and
a workspace of dimension ., the dimension of the null space of the manipulator Jacohian
is equal to (n - m). The extended Jacobian technique [2] imposes (1 ~ w) additional
independent constraints on the motion of the system o make the Jacobian square and full
rank. The pseudoinverse control is equivalent to the imposition of (r - m) constraints that
direct the motion of the joints orthogonal to the (n—n) dimensional null space. While the
constraints due to pseudoinverse control are nonholonomic or nonintegrable, the constraints
imposed by the extended Jacobian technique are holonomic or integrable. Therein lies the
essential difference between the two approaches, more of which will be discussed in section
2.

The pseudoinverse control problem has been swudied by a number of rescarchers {7),
[8], [9], and [16]. Klein and Huang [7] analyzed the nonrepeatability problem of a three
link planar redundant manipulator in terms of the integrability coudition of a Plaftian
differential form. Shamir and Yomndin [16] asserted that for a redundant manipulator
repeatability is guaranteed if and only if there exists an integral surface of the distribution
spanned by the coluinn vectors of the Jacobian pseudoinverse. Under the dillerential
geometric framework adopted, it was concluded that the repeatability of a redundam
manipulator can be assuved if and only if a certain “Lie Bracket Condition” (LBC) is
satisfied. In section 3 of this paper we will show that this LBC is not a necessary condition
for the repeatability of redundant manipulators. We will also show in section 2 that
the LBC is not a sufficient condition for repeatability when applied to arbitrary extended
Jacobians. This contradicts some of the discussion by Luo and Ahmad [9] who discussed the
measure of repeatability for planar redundant manipulators under pseudoinverse control.
They used a framework based on the theory of integration on manifolds. The authors in
{7), {9), and [16] have all concluded in essence that integrability is a necessary condition
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for the repeatability in redundant manipulators. Similar opinion was also expressed in 13).
We do not quite agree with this statement. Our contention is that integrability is only a
sufficient condition for repeatability, it is by no means a necessary condition. In section 3
will derive a weaker necessary condition for the repeatability in redundant manipulators.

In 1989 Klein and Kee [8] presented a numerical procedure to find stable drift-free
trajectories in redundant manipulators under pseudoinverse control. Later, Klein [6] tried
to predict the stable drift-free trajectories of [8] by using the Lie Bracket Condition (LBC)
in {16]. The results indicated that the stable trajectories in [8] are not contained in the LBC
surfaces of [16]. This bears testimony to the fact that the LBC of [16] is not a necessary
condition for repeatability.

Recently Roberts and Maciejewski [14] presented a necessary and sufficient condition
for the existence of stable surfaces for repeatable motion in redundant manipulators. They
showed that the Lie Bracket Condition (LBC) of [16) is a necessary condition for the
existence of an integral surface, but it is not a sufficient condition for the surface to be
stable for repeatability. Since stable surfaces are quite rare, the authors [14] designed a
repeatable control that is nearest, in an integral normn sense, to a desired optimal control.
In this paper we are concerned with repeatable trajectories but not with their stability.
Though the LBC is a necessary condition for a stable surface, we show that it is not a
necessary condition for repeatability. Using a necessary condition, weaker than the LBC,
we will show the existence of “holonomic loops” that lift closed paths in the workspace to
closed paths in the joint space under pscudoinverse control.

With no intention of digressing, we would like to mention that space robots with as
many manipulator degrees of freedom as the dimension of the workspace exhibit a special
kind of redundancy called “nonholonomic redundancy”. It was shown that nonholonomic
redundancy, unlike ordinary redundancy, manifests itself only after a global motion and
is not characterized by “self-motion” manifolds [12]. Inspite of fundamental differences
between nonholonomic redundancy and ordinary kinematic redundancy, more of which
will be discussed in section 2, the control problem in both is characterized by the non-
integrability of the distribution spanned by the vector fields of the system. Ilence the
repeatability problem in space manipulators with no additional degrees of freedom and
terrestrial redundant manipulators are inherently similar.

Since space manipulators are also redundant systems, the repeatability problem in
space manipulators fall within the scope of this rescarch. While the problem of reorienting a
space multibody system using internal motion has been studied by a number of researchers
{10], (11}, [13], (18], [21], [23], etc., an important problem that has not been addressed so
far is the repeatability problem in space manipulators. The motion of the end-effector of a
space manipulator is related to the joint motions through the “generalized Jacobian” [19]
by eliminating the dependence of the end-effector motion on the change of orientation of the
space vehicle. While the joints of the space robot move along closed paths, the orientation
of the space vehicle does not. Consequently the end-effector of the space manipulator does
not move along a closed path. And conversely, the joints of the space robot fail to move
along a closed path when the end-effector traces a closed path. Wlile a more complete
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discussion on this topic will follow in section 2.3, we only like to reiterate here that the
manifestation of redundancy in terms of nonrepeatability in the configuration variables is
observed in nonholonomically redundant space robots and ordinarily redundant terrestrial
robots alike.

The rest of the paper is organized as follows. In section 2 we take a look at the control
of redundant manipulators, including space manipulators, from a different perspective. In
section 3 we derive a necessary condition for repeatability in nonholonomic systemns like
space manipulators and redundant manipulators under pseudoinverse control. We use this
necessary condition to find repeatable trajectories for nonholonomically redundant space
manipulators in section 4 and ordinarily redundant terrestrial manipulators in section 5.
In section 6 we present some results obtained through computer simulation.

2. A Different Perspective on Redundant Manipulator Control
2.1 Pseudoinverse Control as a form of Constrained Motion

Kinematically redundant manipulators have more degrees of freedom than the diinen-
sion of the workspace. For such systeins, the direct kinematic relationship can be written
in the form

= f(0) (1)

where & € R™ represents the workspace variables, @ € R™ represents the manipulator’s
joint variables, and n > m by the defirition of redundancy. Differentiating Eq.(1), we get

c=J0, JE (%‘g) € R™*" (2)

where J is the manipulator Jacobian matrix. The pseudoinverse solution invokes the
control law

0=Jtg : (3)

where J* € R**™ is the pseudoinverse of J. We will always assume in our discussion
that the manipulator is not at any singular configuration. Therefore the Jacobian will
always have full rank and the null space of the Jacobian will have a dimension of (n - m).
The pseudoinverse solution has the minimum norm property which implies that the join
motion @ obtained from Eq.(3) will have to be orthogonal to the null space of J. The
orthogonality requirement is a constraint on the joint velocities 8. Since the null space
of J has a dimension of (n — m), the psendoinverse solution in Eq.(3) will impose (1 — )
velocity constraints. ‘1o illustrate this concept we consider the simple three link planar
redundant manipulator shown in Fig.1. The lengths of all the links of the manipulator are
assumed to be unity for simplicity. ‘The workspace is delined by the Cartesian coordinates
X and Y and the manipulator configuration is described by the absolute angles ¢,, 8., and
05. The direct kinematic relationship, as in Eq.(1), is of the form
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X =cos0, + cos0y + coslls

. . . (4)
Y =sind, + sinf; + sindy
Therefore the Jacobian matrix, as in Eq.(2), is given by
_[—sinf, —sinf; —sinl;
Jo = ( cos 8, cos 83  cos O ) (8)

The Jacobian has a 1-dimensional null space whose basis vector can be conviniently ol-
tained as a cross product of the row vectors of Jo. The velocity constraint due to the
pseudoinverse control can then be expressed as

sin (03 - 0,) d0, +sin (8, — 03) dO; + sin(6; — 8;) dfs =0 (6)

A necessary and sufficient condition for the integrability of a differential expression of
the form

vida+vpdf+vidy=0 (7)
is that [5]
3'02 0‘03 0’03 0‘0] 6'01 8‘02 _
w(72-2) (s -50) (5 - 5) =0 ®

Using the necessary and sufficient condition above, it is quite straightforward to show
that the constraint due to pseudoinverse control, given by Eq.(6), is not integrable or
nonholonomic in the general case. Therefore the three link manipulator shown in Fig.1
has three expressions of motion under pseudoinverse control: the two kinematic relations
given by Eq.(4), and one nonintegrable constraint given by Eq.(6).

In the general case of a redundant manipulator with » joints in an m-dimensional
workspace, there are (n — ) nonholonomic constraints (the number of nonholonomic con-
straints is equal to the degree of redundancy in the system) imposed by pseudoinverse
control and m kinematic relations for a total of n expressions of motion. Of course, the
nonholonomic nature of the pseudoinverse constraints need to be ascertained from the
more general test for integrability in n dimensions, provided in Appendix-A.

When the manipulator has as many degrees of freedom as the dimension of the
workspace, i.e. m = n, the Jacobian is square and has no mull space assuming of course
that the system is not at any singular configuration. Then the pseudoinverse control does
not impose any nonholonomic constraints; the motion of the system is entirely governed
by the n direct kinematic relations that are holonomic.

2.2 Repeatability using the Extended Jacobian

Consider a simple nonholonomic system whose constraint equation is of the form

dz=adx +bdy 9)
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where z, y, and z are the system variables, and a and b are functions of = and y. The
variables z and y can be considered to be the independent variables of the system and :
may be considered to be the dependent variable. If z and y move along a closed path, the
change in the dependent variable z is expressed as

b  Oa
d =f dz+bd =// (———)dzd-
/z GDa v D oz dy Y

In the above equation the line integral was conviniently expressed as a surface integral
using the generalized Stokes’ Theorem [1] on the 2-dimensional oriented manifold D. D
is the path of line integration and is the boundary of the domain D. Since the constraint
in Eq.(9) is a nonholonoinic constraint, we can show

b, da

=7 oy
by using the test for integrability in Eqs.(7) and (8). Then it simply follows that the
dependent variable z does not move along a closed path as the independent variables =
and y move along closed paths. Clearly, all the variables of the nonholonomic systen
in Eq.(9) do not move along closed paths simultaneously. This is true for nonholonomic
systems in general including redundant manipulators under pseudoinverse control. The
pseudoinverse control of redundant manipulators result in nonrepeatable motion of the
joint variables. Conversely, holonomic systems are characterized by repeatability in the
configuration variables that can be proven directly from the test for integrability.

The problem of nonrepeatability of nonholonomically constrained redundant manipu-
lators under pseudoinverse control can be remedied by using the extended Jacobian method
[2]. For a n joint redundant manipulator with an m-dimensional workspace, the extended
Jacobian method imposes (n — m) independent holonomic constraints of the form

g®=0, geRrt»™ (10)

These holonomic constraints are similar to the direct kinematic relations in Eq.(1) and
can be used to augment the manipulator Jacobian in Eq.(2) for constructing the extended
Jacobian as follows

a.: . f é J nxn .é (‘)g n-m)xn
(5)=de0  3s2(F )erm o2 (55)enem (i)

The above equation indicates that we have artificially increased the dimension of the
workspace from m to n and in effect we now have a nonredundant manipulator with a
square Jacobian. From our discussion in section 2.1, we know that the pseudoinverse
control of such a manipulator does not impose any nonholonomic constraints. The mo-
tion of the system is then governed completely by the m direct kinematic relations in
Eq.(1) and the (n — m) additional constraints of Eq.(10). Holonomic systemns are char-
acterized by repeatability and the extended Jacobian technique achieves repeatability by
converting the “redundant-manipulator-pseudoinverse-control” nonholonomic system into
a holonomic system.




An alternative way to look at the extended Jacobian technique is to reconsider the
constraints in Eq.(11). 1f we group the joint variables @ € R® into two sets consisting of
6, € R™ and @, € R*~™, we can write from Eq.(11)

. ; ; 1]

c=J,0,+J,0,, Jxé (‘gg:). ng(géf—?) (12)
. ) 9

0=Jg 60, +J5: 0, Ja S (%) v Ja2 £ (5-9%) (13)

Since the (n — m) constraints in Eq.(10) are all independent, it will be possible to find the
set 0; € R*~™ such that the matrix Jg; is always invertible. Then Eqs.(13) and (12) can
be written as

0,=-Jc,"' Js, 0, (14)
T = jb], .7 = (J] -JQJGQ—lJcl) € R ™ (15)

The above equations are modified differential forms of Eqs.(1) and (10) and are therefore
holonomic in nature. Since the Jacobian J is square, the system in Eq.(15) virtually
represents a nonredundant manipulator with & as the workspace and 6, as the joint space.
Therefore the pseudoinverse control of Eq.(15)

0,=J*s (16)
imposes no nonholonomic constraints. This follows from our discussion in section 2.1. "This
along with the fact that Eq.(15) is a holonomic equation implies that the constraints of
motion of the system in Eq.(16) are holonomic. Therefore closed paths in the workspace
a will result in closed paths in the joint space 0,, provided the manipulator does not pass
through any singular configuration. This follows from our discussion earlier in this section.
Additionally, since Eq.(14) is holonomic, closed paths in the space of the independent
variables 8, will result in closed paths in the space of 0, - the dependent variable. In effect
the extended Jacobian method will lift closed paths in the workspace x to closed paths in
the joint space comprising of both 8, and 8,.

2.3 Redundancy in Space Manipulator Systems

Space robots exhibit nonholonomic redundancy [12] - a special type of redundancy
that exists in the absence of ordinary kinematic redundancy. Unlike ordinary kinematic
redundancy, nonholonomic redundancy manifests itself only after a global motion and
cannot be characterized by self-motion manifolds. Inspite of fundamental differences, both
redundancies are responsible for nonrepeatable motion of the configuration variables under
pseudoinverse control. The nonrepeatability in the configuration variables are a direct
manifestation of nonholonomic constraints of motion. In the case of ordinarily redundant
terrestrial robots the nonholonomic constraints are imposed by the pseudoinverse control
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itself, whereas in the case of space robots the nonholonomic constraints are naturally
imposed by the conservation of angular momentum.

Consider a space manipulator system with manipulator joint variables @, € R™ in a
workspace & € R™. The manipulator is chosen to have as many degrees of freedom as the
dimension of the workspace to exhibit the manifestation of nonholonomic redundancy in
the absence of ordinary kinematic redundancy. The orientation of the space vehicle on
which the space manipulator is mounted is denoted by @, € R*. Figure 2 depicts a planar
space manipulator for which m = 2 and & = 1. It can be shown {11], [12] that the direct
kinematic relation of the space manipulator is of the form

x = £(0,,00) (17)

which has the structure

¢=J191+J090 (18)

in differential form. The nonholonomic constraint due to angular momentum conservation
can be expressed as [11]

6,=H(0,)0, (19)

A complete description of the matrix H € R**™ can be found in [11]). Equation (19) can
be substituted in Eq.(18) to obtain

:i:=j01, jé(Jl'i'JoH) (20)

where J € R»*™ is the “generalized Jacobian” [19).

The generalized coordinates of the system include 6, € R™ and 6, € R*. The total
number of generalized coordinates is (m + &) and the dimension of the workspace is .
The redundancy in the space manipulator systeimn is due to the higher dimension of the
generalized coordinates than that of the workspace. The difference in the number of
generalized coordinates and the workspace variables is equal to the degree of redundancy
in the system. This is similar to ordinary kinematic redundancy in terrestrial manipulators.

A fundamental difference in the redundancy between space manipulators and terres-
trial manipulators is that the dimension of the input space is equal to that of the gener-
alized coordinates in the case of terrestrial manipulators whereas for space manipulators,
the dimension of the input space is smaller than the dimension of the generalized coor-
dinates. The inputs for terrestrial manipulators ave the derivatives of all the generalized
coordinates, for space manipulators they comprise of the derivatives of the independent
generalized coordinates only, the orientation variables of the space vehicle being the de-
pendent generalized coordinates. :

A closer look at Egs.(19) and (20) point out their similarity to Eqs.(14) and (15).
Though the equations look similar, they are fundamentally different because Eqs.(14) and
(15) are holonomic while Eqs.(19) and (20) are nonholonomic in nature. Due to this
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difference, the extended Jacobian method of redundancy control results in repeatable joint
motion in ordinarily redundant terrestrial manipulators whereas the pseudoinverse control
of the generalized Jacobian [19] results in nonrepeatable joint motion in space manipulators.
A more complete discussion on this topic is presented next.

Consider the trajectory control in the three different cases of: (a) a nonholonomically
redundant space manipulator, (b) an ordinarily redundant terrestrial manipulator, and (c¢)
an ordinarily redundant terrestrial manipulator using the extended Jacobian. For case (a)
the forward kinematics is expressed by Eqs.(17) and (19). Since Eq.(19) is nonholonomic,
a closed path in 8, space does not imply a closed path in the 8 space. This implies from
Eq.(17) that a closed path in the joint space of the space manipulator does not result in
a closed path in the workspace. For cases (b) and (c) the forward kinematics is simply
expressed by Eq.(1) - a position constraint. Therefore a closed path in the joint space
will necessarily result in closed trajectories of the end-effector variables. For end-effector
trajectory control in case (a), we use the pseudoinverse control law from Eq.(20)

0,=J*g (21)

to plan the joint trajectories. Equation (20) is a nonholonomic equation because it was
obtained by substituting a nonholonomic equation, namely Eq.(19) i1.to a holonuic equa-
tion, namely Eq.(18). Therefore, while using Eq.(21), closed trajectories in the workspace
will generally not result in closed trajectories in the joint space. This can be easily proven
by contradiction. Suppose that closed trajectories in @ produce closed trajectorics in 0.
We know from the nature of Eq.(19) that closed trajectories in 8, do not usually produce
closed trajectories in 6y. This will contradict Eq.(17) that requires the trajectories of 8
to be clesed for closed trajectories of  and 6,. For case (b) closed trajectories in the
workspace do not result in closed trajectories in the joint space whereas for case (¢) they
do. This follows straight from our discussion in section 2.2. We conclude this section by
summarizing the last result in a tabular form.
Closed Path in Joint Space Closed Path in Workspace

implies implies
Closed Path in Workpspace Closed Path in Joint Space

Space Manipulator False False

Redundant Manipulator True False
(Pseudoinverse Control) .

Redundant Manipulator True True
(Extended Jacobian)

2.4 The LBC is not a Sufficient Condition for Repeatability

Shamir and Yomdin [16] studied the repeatability problem in redundant manipulators
and derived a necessary and sufficient condition, the Lie Bracket Condition (LBC), for
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repeatability. In this section we will show that the LBC of [16] is not a sufficient condition
for repeatability when applied to arbitrary extended Jacobians [2]. This contradicts some
of the discussion made in [9].

In simple words, the LBC [16] states that repeatability in manipulators is assured if
and only if the Lie Bracket of any two column vectors k; and k; of the matrix K, K being
the pseudoinverse of the manipulator Jacobian, is a linear combination of the columns of
K.

For a manipulator with as many degrees of freedom as the dimension of the workspace,
the control matrix K is simply the inverse of the manipulator Jacobian, assuming of course,
that the manipulator is not at any singular configuration. The LBC is satisfied for the
square and full rank matrix K, and indeed, we have repeatable joint motion when the
end-effector moves along closed paths.

Since the LBC is always satisfied for square matrices with full rank, Luo and Ahmad
[9] extrapolated that repeatability can be achieved by simply converting the rectangular
Jacobian of a redundant manipulator into a square matrix by inposing additional inde-
pendent constraints. They supported their argument with the example of the extended
Jacobian [2]. This method achieves repeatability by imposing additional independent con-
straints that are holonomic. The assertion of Luo anC Ahmad [9] is not correct because
the rectangular Jacobian may be extended into a square matrix of full rank by imposing
nonholonomic constraints as well, and nonholonomic systems do not exhibit repeatability.
To understand better, we look back at the expressions of motion of a redundant manip-
ulator under extended Jacobian control [2] and a space manipulator, in scctions 2.2 and
2.3 respectively. Specifically, we compare Eqs.(12) and (14) in section 2.2 with 1¢s.(18)
and (19) in section 2.3. We have seen in section 2.3 that these two systems have struc-
turally identical kinematical equations and constraints but the nature of their constraints
are different. Since the space manipulator has nonholonomic constraints, closed paths in
the workspace do not result in closed paths in the joint space. This tells us that if the con-
straint in Eq.(14) were nonholonomic, the pseudoinverse control of the extended Jacobian
of the redundant manipulator in section 2.2 would exhibit nonrepeatable joint motion as
well.

To illustrate nonrepeatability in redundant manipulators with an extended Jacobian,
we consider the manipulator in Fig.1. We assume all the link lengths to be equal to 0.5 units
for the sake of simplicity. For this manipulator which has a single degree of redundancy,
we impose one nonholonomic constraint

05 = sin(8; + 0s) 0, + cos(0; + 0s) 0,

The extended Jacobian relation of the manipulator takes the following form

X 1 —-sin 0, —sin 0y ~sin 03 é.
Y|= 3 cos 0, cos 0, cos Oy o, (22)
0 sin{0, + 03) cos(0; + 03) -1 03

Except at the singular points, the pseudoinverse of the extended Jacobian in Eq.(22)

9




will be equivalent to the inverse, for which the LBC will always be satisfied. However,
closed paths in the workspace x will not always result in closed paths in the joint space @,
as seen from Fig.3. Therefore, the assertion made in [9] is not correct.

We wish to make two comments in regard to Fig.3. The abcissae and ordinate in ['ig.3
are in different scales. Therefore the circular path of the end-effector looks elliptical. For
the same reason, the link lengths seem to vary in different configurations. Also, it may be
noted that the manipulator exhibits a limit cycle behavior - the drift in the joint angles
of the manipulator decreases as the end-effector repeatedly moves along the closed path.
This limit cycle behavior of redundant manipulators will be explained later in section 5.

3. A Necessary Condition for Repeatability

Shamir and Yomdin [16] studied the repeatability problem in redundant manipulators
and arrived at a Lie Bracket Condition (LBC) as a necessary and sufficient condition for re-

peatability. The LBC is by itself a necessary and sufficient condition for the integrability of

the distribution associated with the Jacobian pseudoinverse. This comes directly from the
statement of Frobenius’s Theorem [17). This was proven separately for the 3-dimensional
case in [9], [14]. In essence, Shamir and Yomdin [16] asserted that repeatability can be
achieved if and only if the solution to the pseudoinverse control problem is integrable. We
do not quite agree with this condition since there exists a weaker necessary condition for
repeatability.

Terrestrial redundant manipulators under pseudoinverse control and nonholonomically
redundant space manipulators are both constrained systems, and the repeatability problen
in these redundant systems is a search for closed trajectories of their configuration variables.
We take into consideration the constraints of the systems by searching for closed trajectories
of the independent configuration variables that result in closed trajectories of the dependent
configuration variables. The change in the dependent configuration variables is expressed
as a line integral along the closed path in the space of the independent configuration
variables. This line integral may be conviniently expressed as a surface integral using the
generalized Stokes’ Theorem on a manifold. If D is an oriented manifold of dimension &,
and if w is a (k — 1)-form on D, then from Stokes’ Theorem [1] we have

/BDw=/de (23)

where, 8D is the path of the line integration and is the boundary of the domain D, and
dw is a differential k-form obtained by exterior differentation of w. In the case of a planar
terrestrial manipulator with three links and a single degree of redundancy, the domain D is
a 2-dimensional manifold, and the differential 1-form on D has the functional dependence

w = ddo = 01(é1,62) dbs + g2(1, b2) oo (24)

where, ¢, is the dependent joint variable, and ¢, and ¢, are the independent joint vari-
ables of the manipulator. If Eq.(24) were to depict the constraint in a nonholonomically
redundant planar space robot with two links, ¢, would represent the orientation of the
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space vehicle in the plane, and ¢, and ¢; would represent the joint variables of the two
link manipulator.

Using Stokes’ theorem, the line integration of dgo along a path 8D on the 2-dimensional
manifold D of ¢; and ¢, is expressed as

_ 32 9
-/ [a¢. ]d¢1/\d¢2

":E/ [892 -8gl]d¢1d¢2

where “A” denotes the exterior product, and a, the orientation of D has the same orien-
tation as d¢, A d¢a when the direction along the path is counterclockwise, otherwise a has
the same orientation as d¢; A d¢;.

If the constraint given by [q.(24) were a holonomic constraint, then we would have

d 99, .

Then the change in the variable ¢, would be zero for all closed paths in the domain
D because of the integrable nature of the constraints. This would ensure repeatability.
Our contention is that integrability is a sufficient condition for repeatability but is not
a necessary condition. For the nonholonomically redundant space manipulator or the
terrestrial redundant manipulator the condition given by Eq.(25) does not hold good, yet
repeatability can be achieved for certain closed paths in the domain D. We define

- 52 2 Flw ) (26)
The change in the dependent joint variable ¢, of the redundant manipulator for a positive
direction of travel in the space of the independent joint variables is equivalent to

/ dpo = / F(é1, é2) dprddy
b1} D
= P($},43) /D drddy = F(4,43) A(D)

where, the above equation was obtained by the application of the mean value theorein
of integral calculus. The function F is assumed to be continuous in the entire domain
D and hence the mean value theorem applies. ¢} and ¢3 denote somne point within the
domain D, and A(D) is the measure of the domain D; in this case it is simply equal to the
area enclosed within the closed curve aD. F(¢3,43) can also be interpreted as the mean
value of the function F, defined in Eq.(26), taken over the domain D. If this mean value
happens to be zero, then we would have a zero net change in the dependent joint variable
of the redundant manipulator. This would ensure repeatability in the joint motion of the
terrestrial manipulator. For the space manipulator this would ensure repeatability in the
motion of the end-effector in the workspace. We are now ready to state the necessary
condition for the repeatable motion of the redundant manipulator.
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Proposition: A necessary condition for the repeatable motion of the redundant manipu-
lator is that the closed path D which is the boundary of the domain D in the independent
configuration space should enclose at least one point where the function F defined by
Eq.(26) is equal to zero.

The proof of the proposition stated above is quite straightforward and is left to the reader.

If the necessary condition for repeatability is satisfied, it may be possible to find
paths in the space of the independent configuration variables such that the net change
of the dependent configuration variables is zero over the closed path. The closed path in
the independent configuration space will then be like a “holonomic loop” over which the
nonholonomic system will exhibit holonomic behavior globally. Incidentally, the holonomic
loops will not belong to any integral surface and as such the LBC or the integrability
condition, defined in Appendix-A, will not be satisfied at all points along the loop.

4. Repeatability in Nonholonomically Redundant Space Manipulators

There are two different repeatability problems for a space manipulator system: (a) the
direct problem of finding a closed path in the joint space of the manipulator such that
the end-effector traces a closed path, and (b) the inverse problem of finding a closed path
in the workspace that will result in a closed path in the joint space under pseudoinverse
control. The inverse problem can be solved by simply solving the direct problem when
the number of manipulator joints is equal to the dimension of the workspace, as in our
case. This is true because in such situations the pseudoinverse is identical to the inverse
assuming that the manipulator is not at any singular configuration. In this section we
consider the direct repeatability problem of a planar space robot with two links mounted
on a space vehicle as shown in Fig.2. Since the manipulator has two links, the system will
exhibit nonholonomic redundancy in the absence of ordinary kinematic redundancy.

The Cartesian coordinates of the end-effector zg, ye of the manipulator have a func-
tional dependence of the form

zg = f1 (o, y0,00,01,02), ye = fa(z0,v0, 0,0, 02) (27)

where zo and y, are the coordinates of the center of mass of the space vehicle, 6, is the
orientation of the vehicle, and 0, and 0, are the joint variables. The motion of the center of
mass of the space vehicle is governed by a holonomic constraint due to linear momcutum
conservation. For zero initial linear momentum, this can be reduced to the form (11}

zo = f3(00,01,03), vo = f4(00,6,,62) (28)

Since we are looking into the repeatability problem of a planar space robot, we consider
closed trajectories of the joint variables. If the orientation of the space vehicle trace a closed
curve as the joints move along a closed trajectory, it is clear from Eqs.(27) and (28) that all
the configuration variables including =, yo, zg, and yg will move along closed trajectories.
This is not true in the general case.
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When the joints move along closed trajectories and the systemn maintains zero angular
momentum, the change in the orientation of the space vehicle is expressed as a surface
integral using the generalized Stokes’ Theoremn on a manifold, as given by Eq.(23). The
domain D will be the 2-dimensional joint space of the manipulator and the differential
1-form on D will be the constraint due to the conservation of angular momentuin, given as

w = dbg = g,(0,,02) db, + g2(6,,6;) d0,
B C
- (z) o, (Z) a6, (29)

where A, B, and C are functions of 8, and ¢; and are defined in Appendix-B. The function
F defined in Eq.(26) is therefore equal to

‘ ad (BY 9 (C
Pon0) 2 55 (%) - 5 (5) (30)

We now present a simple method to plan repeatable paths for the space manipulator.
All paths that will ensure repeatability will have to satisy the necessary condition for
repeatability, developed in section 3. Therefore, we first take a look at all points in the
0,-0, space where the function F(6,,0;) in Eq.(30) is identically zero. The set of all such
points constitute a smooth curve, as seen in Fig.4.

We assume our closed path to have an elliptical shape. This path, as seen in Fig.5,
can be parameterized as follows:

8, = 0,0 + acos pcos 2nt — b sin P sin2xt
telo,1) (31)
83 = 029 + a sin pcos 2at 4 bcos ¢ sin 2xt
where, a, and b are the major and minor axes of the ellipse, ¢ is the angle of inclination
of the ellipse with the 0, axis, and 6, and 059 are the coordinates of the center of the
ellipse. The velocities of the joints of the manipulator can be easily obtained fromn the
above equation as a function of time. Consequently, the rate of change of the orientation
of the space vehicle can be obtained from Eq.(29) as a function of timne.

We start with an initial elliptical path which is characterized by the parameters 6,9,
020, a, b, and ¢. The initial choices of these parameters are quite arbitrary. We only make
sure that the elliptical path encompasses at least one point where the function F defined
by Eq.(30) is equal to zero. This condition can be easily satisfied by considering Fig.4
which provides the set of all points where the function F vanishes.

Our goal is now to change the five parameters of the ellipse so that the surface integral
of the function F in Eq.(30) over the elliptical path is equal to zero. Of the five different
parameters a and b are not allowed to change independent of one another. This is because
we want to eliminate the trivial solution where the surface integral is zero because the area
of the closed path is equal to zero. One simple way to avoid this situation is to impose the
restriction that the arca of the ellipse is a constant. ‘This is equivalent to the constraint

adb+bda =0 (32)
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We define a function V as follows

V=g, ¢ //D F(61,0,) d,db, (33)

and solve the unconstrained minimization problem by implicitly assuming that « and b
are dependent. In Eq.(33) ¢ is equal to the net change in the orientation of the space
vehicle as the joint variables move along closed paths. While there are many methods for
unconstrained minimization, we choose the simplest method of steepest descent [20]. Other
alternative methods that can be used are the conjugate direction method by Fletcher and
Reeves (4], and the variable metric method (20] that offer improvement over the method
of steepest descent. In our case the method of steepest descent works well and therefore
we adopted it only for its simplicity.

The correct choice of the independent parameters 6,9, 829, ¢, and e that provied us
with the steepest direction of descent of the function V are computed as

L i 49

9010’ 803’ da

In the above equation, the quantities (9¢/80,0), (9¢/8020), (9¢/0¢), and (9¢/8a) are com-
puted by numerical partial differentiation. While computing the term (9¢/da) it has o be
remembered that a change in « is accompanied by a change in b given by the constraint in
Eq.(32).

The optimization technique discussed above provides us with a systematic way to
reach the local minimum value of the function V. If this minimum value is zero, then we
have converged upon the desired path around which the space robot will exhibit pseudo-
holonomic behavior. In the general case, the method of steepest descent does not guarantee
the convergence of a function to its global minimum value. However, in our case the method
always converged to the global minimuin value of vV = 0, because of the particular nature
of the function F in Eq.(30).

d9yo = —¢ dbz0 = ~¢ dg = —¢ 3—3. da = ¢

5. Repeatable Motion under Pseudoinverse Control

The repeatability problem in redundant manipulators under pseudoinverse control is
a search for closed trajectories of the end-effector that result in closed joint trajectories.
Since the pseudoinverse control is actually a form of nonholonomically constrained motion,
closed joint trajectories can be obtained only if the dependent joint variables move along
a closed path as the independent joint variables do. Our logical first step is therefore
to search for closed trajectories of the independent joint variables that result in closed
trajectories of the dependent joint variables.

To further our discussion, we consider the planar redundant manipulator in Fig.1 with
unity link lengths. This example was considered in (7], [9], and [16]. The kinematic
relations of this manipulator are given in Eq.(4) and its Jacobian is given by Eq.(5). The
nonholonomic constraint of the manipulator under pseudoinverse control is given by 14.(6),
which is not of the form given by Eq.(24). To reduce it to this form, we use the simple
transformation
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Vi=0, Ya=80;-0,, Y3=03—-0; (34)

The transformed constraint equation

[sin(¥2 + ¥s) ~ sin ¥ — sin ¥s] d¥, — sin ¥z ds + [sin(¥a + ¥s) —sin o] dyy = 0 (35)

is then of the form as given by Eq.(24). Under the assumption that

8in ¥y + sinys —sin(y¥; + ¥s) # 0 (36)

the change in the dependent variable y,, as the independent variables y; and ¢, move
along a closed path, can be shown to be

1
oD i = .//p [sin ¥y + sin ¥3 — sin(¥2 + ¥3)] Hadds

using Stokes’ Theorem {1]. The function F defined by Eq.(26) is given as

1
[sin ¥z + sin Y3 — sin(¥3 + y¥3))
and is not equal to zero anywhere in the y;-¢s plane. The necessary condition for repeata-
bility is therefore not satisfied. This means that when the condition in Eq.(36) holds good,
the redundant manipulator cannot exhibit repeatability. The condition in [.(36) does
not hold good when we have any one of the three cases

F(y2,v¥3) £ (37)

(a) ¢2=0 = 0, =0,
(b) Yvs=0 — 0y =03
() Yva+y¥s=0 PN 05 =0,

Using Eq.(35), it is possible to show that the three cases above imply

{0) ¥2=0 - dy =0

(b) ¥3=0 - dps=0

() ¥at¥a=0 - d(¥2 +y¥a) =0
Therefore, each of the three cases represent an integral surface. These results are identical
to that obtained by Shamir and Yomdin [16] using the Lie Bracket Condition (LBC). We

have to agree that for the particular example considered, repeatability can be achieved
only if the LBC holds good, i.e. the LBC is a necessary condition for repeatability.

The LBC is not a necessary condition for repeatability in the general case. To illustrate
this concept we consider the same manipulator as in Fig.1, but we redefine the configuration
variables. Once again we assume the link lengths to be unity for the sake of simplicity.
If the new configuration variables are y,, v, and s, as defined by Eq.(34), then the
kinematic relations of the manipulator are
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X = cosy; + cos ¥y + cos a3

) (38)
Y =siny; + siny;;3 + sinyas
and the manipulator Jacobian is given by
J, = ( —~siny) ~siny 3 —siny)2s —sinyya —sinyjzs —siny;s ) (39)
v cosyY) +co8yY 3+ cosyyay oSy 3t cosyys oSV

where we used the compact notation v,; and ¢,33 to denote (v, + ¥2) and (¢, + ¢ +
¥s) respectively. We note that the Jacobian Jy in the above equation is quite different
from the Jacobian Jy in Eq.(5). Consequently, the pseudoinverse control for Jy, would be
considerably different from that of J,.

The nonholonomic constraint of the manipulator under pseudoinverse control of J,, is
found to be

sin Y3 dy; — [sin 3 + sin(y¥2 + ¥3)] d¥y + [sin ¥y + sin(¥z + ¥3)] dyYs =0 (40)

Assuming sinys # 0, the change in the dependent variable y,, as the independent variables
¥2 and y3 move along closed paths, can be shown to be

_ sin Y3 cos ¢z + sinyscos(ys + ¥3) - sinyy
/ao = //D sin ya? dipdys (41)

The function F defined in Eq.(26) is thercfore equal to

F($s,v3) 4 siny3 cos ¥y + sin 1,.(:3c0t;(¢2 + ¥3) —sinyy
sinys

To plan repeatable paths for the redundant manipulator under pseudoinverse control,
the necessary condition for repeatability discussed in section 3 has to be satisfied. There-
fore, we take a look at a set of points where the function F(yy,¢s) vanishes. A set of these
points is given in Fig.6. We assume the closed path in the space of the independent joint
variables, v12 and ¢s, to have an elliptical shape, as shown in Fig.7. The path in y, and
¥s is parameterized in a way similar to Eq.(31). We start with an initial choice of the
parameters 0, ¥30, , b, and ¢. The choice is quite arbitrary except for the fact that the
path should enclose at least one point where the function F defined by Eq.(42) is equal
to zero. This condition can be satisfied by considering Fig.6. Our goal is now to change
the five parameters of the elliptical path so that the surface integral of the function F in
Eq.(42) over the path is equal to zero. We achieve our goal by adopting the optimization .
technique outlined in section 4. The optimized path can then be likened to a “holonomic
loop” over which the joint angles of the redundant manipulator will exhibit holonomic
behavior globally. :

Let us define the optimized closed path in the joint space to be Cy. Using forward
kinematics, as given by Eq.(38), we can obtain a closed path in the workspace Cyy of the
redundant manipulator from Cz. Under pseudoinverse control, Cyy will map back to Cs

(42)
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in the joint space. This is true because (a) the mapping C; — Cyy satisfies the kine-
matic relations of the manipulator, and (b) the closed path C satisfies the nonholonomic
constraint due to pseudoinverse control.

Before we conclude this section we wish to make two comment:

1. It can be shown that the Lie Bracket Condition (LBC) in [16] is not satisfied at every
point on Cz, yet the net change in the dependent joint variable y, along Cz is zero.
Therefore, we can achieve repeatability in the absence of an integral surface.

2. Our second comment is in regards to the limit cycle behavior in redundant manipu-
lators. It was noted in {7] that under pseudoinverse control some manipulators drift
continuously while others exhibit limit cycle bebhavior. Our studies lead us to belicve
that the drift in a redundant manipulator may be self-optimizing in the sense that
the drift may decrease with every cycle of end-effector motion. When such a situation
arises, the drift finally goes to zero and the manipulator reaches a limit cycle.

6. Simulations
6.1 A Nonholonomically Redundant Space Manipulator
We carried out several computer simulations. Here we present results of one particular

case. The kinematic and dynamic parameters of the planar space robot were chosen to be

Kinematic and Dynamic parameters

Mass Inertia Length

(kg) (kg-m?) (m)
Vehicle 27.440 1.520 r =020
Link-1 5.380 0.115 4, = 0.50
Link-2 2.640 0.028 i, = 0.35

The initial parameters of the elliptical path were arbitrarily chosen as

a= 150000, b=100000, ¢=0.75000, 6,0 =0.50000, Oy = 0.50000 (43)

where the units are in radians. For these set of values, the numerical value of the surface
integral ¢ was found to be ¢ = -0.162775. The convergence criterion was set at |¢| <
1.0 x 1078, The values of the path parameters after convergence were

a=131117, b=114381, ¢=0.79302, 0,9 = 0.34004, 655 = —0.07054 (44)

The two elliptical paths are shown in Fig.8. Ellipse I corresponds to the initial choice
of the path parameters given by Eq.(43) for which the value of ¢ = -0.162775. Ellipse
IT corresponds to the optimized values of the path parameters given by [£q.(44) and the
value of ¢ for this path was ¢ = —9.9636 x 10-°. ‘l'he sinusoidal curve in Fig.4 is insct in
Fig.8. This curve passes through both paths I and I7 and therefore these paths satisfy the
necessary condition discussed in section 3.
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Figures 9 and 10 depict the motion of the end-effector of the space robot for 20 cycles
for the elliptical paths I and ITI respectively. The end-effector configuration is seen to drift
in Fig.9 but has negligible drift for the closed path in Fig.10. The magnitude of the drift
was computed to be approximately 76.96 mm/cycle in the case of path I whereas it was
only 0.87 mm/cycle for path /1.

6.2 An Ordinarily Redundant Terrestrial Manipulafor

We considered the simple case of a planar three link manipulator with one degree
of redundancy, as shown in Fig.1. The kinematic relations of the manipulator and its
Jacobian are given by Eqs.(38) and (39). We assumed the links of the manipulator to have
equal lengths of 0.5 metres.

The initial parameters of the elliptical path was arbitrarily chosen as

a = 100000, b= 100000, ¢=0.00000, o =0.75000, yso = 1.50000 (45)

where the units are in radians. For these set of values, the numerical value of the surface
integral ¢ was found to be ¢ = 1.9838625. The convergence criterion was set at (| <
1.0 x 1078, The values of the path parameters after convergence were

a=103337, b=0096769, ¢=000232, o =051512, yso=1.42478 (46)

The two elliptical paths are shown in Fig.11. Ellipse I corresponds to the initial choice
of the path parameters given by Eq.(45) for which the value of ¢ = 1.9838625. Ellipse I/
corresponds to the optimized values of the path parameters given by Eq.(46) and the value
of ¢ for this path was ¢ = 9.9431 x 10~%. The sinusoidal curve in Fig.6 is inset in Fig.11. This
curve passes through both paths I and IT and therefore these paths satisfy the necessary
condition discussed in section 3.

Path II in Fig.11 is the optimized path in the y;-y3 plane of the manipulator that
results in closed loop motion of the dependent joint variable ¢,. For an initial value of
¥1 = 0.0, the closed end-effector trajectory Cy that is obtained from these closed joint
trajectories C is shown in Fig.12. Figure 12 also shows the link configuration of the
manipulator at six different points along the trajectory. The joint trajectories obtained
through pseudoinverse control of the closed end-effector trajectory in Fig.12 are shown in
Fig.13. The joint trajectories in [ig.13 pertain to 5 cycles of end-effector motion. The
numerical simulation was continued for more than 100 cycles and the joints were seen to
have exceptional repeatability. This conforms to our discussion in section 5.

We wish to make two comments at this juncture:

1. The Lie Bracket Condition (LBC) in [16] is essentially a test for integrability of the
distribution spanned by the column vectors of the Jacobian pseudoinverse. Though
the LBC can be verified from the Jacobian transpose instead of the pseudoinverse [9],
(14], it may still involve a significant amount of symbolic computation. An easier way
out is to test the integrability of the constraint imposed by the pseudoinverse control.
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We can use Eqgs.(7) and (8) to test the integrability of the pseudoinverse constraint
In Eq.(40). For the joint trajectories in Fig.13 it can be shown that the condition for
integrability is not satisfied at all points along the path, i.e. F(y3,¥s) in Eq.(42) is not
zero at all points along the path. Therefore repeatability is achieved in the absence of
integrability. This refutes the LBC in [16].

2. Since the end-eflector trajectory is generated from the joint trajectories and since
the initial configuration of the dependent joint variable, v, in our case, is completely
arbitrary, any rotation of the end-effector trajectory in Fig.12 about the z-axis will also
produce repeatable joint motion. Clearly, there are infinite end-effector trajectories
that produce repeatable joint motion.

7. Conclusion

In this paper we promoted the concept that integrability is not a necessary condition
for repeatability in nonholonomic systems. This allows us to plan repeatable trajectories
for free-flying space manipulators with zero initiai momentuin whose constraint due to the
conservation of angular momentum is not integrable. This is important because it allows
a space manipulator to perform repeated tasks in space without any drift in its configura-
tion variables. For terrestrial manipulators under pseudoinverse control the nonholonomic
constraint is imposed by the control law. We showed that under pseudoinverse control,
repeatability of the joint variables can be achieved in the absence of any integral surface
and by virtue of the presence of “holonomic loops”. These loops, when they exist, allow
a nonholonomic system to exhibit repeatability in its configuration variables. In this pa-
per we presented a simple optimization technique for planning repeatable trajectories for
both nonholonomically redundant space manipulators and ordinarily redundant terrestrial
manipulators.
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APPENDIX-A

The necessary and sufficient condition that the differential constraint in n variables

vidzy; +vadra + -+ v, dz, =0

is integrable, is that the set of equations
v, vy vy v,
(a“ - m,.) Y (ax, - 0:“) T

are satisfied simultaneously for all different combinations of A, 1 and v [5).

dv, 811,,) -0
dz, Oz,)

(AII‘IV= 1021' "u"’)

APPENDIX-B
The terms A, B, and C in Eq.(29) are defined as follows

a 1 4 i i3
A=1 + 7l mo(m,; + my) + 4M(moml + mymg + dmemz) + 4AITII2(m0 + my)
1 ] 1
Almo(m. + 2my)rlycos 0, - —M—m;(mu 4 0.5 ) lyeus 0, 1 i —wmgmgrlycos(0y 1 0;)

3
B2 nL+1; + (mom1 + mymgq + momy) + 4Mm;(mo +my) + mo(nq + 2my)rljcos 0,

+ -l—mg(mo +0.5my )l 3008 0; + —momarlycos(0, + 02)

M 2M

B 3
C=Il+ Zaﬁm"(m" +my)+ —ﬁmomgl,lgcos 0, + m—momgrlgcos(ol + 6,)

where, mo, m;, and m, are the masses of the space vehicle and the two links of the ma-
nipulator, Iy, I;, and I, are the moment of inertias of the space vehicle and the two links
about their center of masses, r is the distance of the first joint from the center of mass of
the vehicle, {, and {3 are the lengths of the two links, M 2 mo+m, +mg, and I, & Lo+ L + L.

2]




Figure 1. A planar three link redhndant manipulator.
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Space Vehicle

(x¢» Yo) = center of mass (C.M.) of space vehicle

(Xg» Yg) = coordinates of the end-effector

Figure 2. A two link planar space manipulator mounted on a space vehicle.
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Figure 3. Nonrepeatable joint motion of the three link redundant
pseudoinverse control of its extended Jacobian.
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Figure 4. The locus of points in the 6,-8, plane of the planar space robot where £(0,,6;) = 0.
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a = semi-major axis of ellipse
b = semi-minor axis of ellipse

!

L

(M. M) =(acost,bsint)

> 0,

Figure 5. Parametric representation of the elliptical path in the joint space of the space
robot. P is the center of the ellipse, and ¢ is the angle between the major axis of the cllipse

and 6;.
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Figure 6. The locus of points in a certain regioﬁ of the ys-ys plane of the three link
redundant manipulator where F(ys,¥s) = 0.
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a = semi-major axis of ellipse
b = semi-minor axis of ellipse

A

n,

Figure 7. Parametric representation of the elliptical path in the space of the independent
joint variables of the redundant manipulator. P is the center of the ellipse whose major
axis subtends an angle ¢ with v,.
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Figure 8. Elliptical paths in the joint space of the planal space robot. Path I is the initially
chosen path and Path 1 is the optimized path.
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y coordinate of end-effector (m)

x coordinate of end—effector (m)

Figure 9. End-effector drift in 20 cycles for Path I in the joint space of the space robot.
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y coordinate of end—effector (m)
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—1 -0.5 0 0.5 1

x coordinate of end—effector (m)

Figure 10. Repeatable end-eflector motion for Path I1 in the joint space of the space robot.
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Figure 11. Elliptical paths in the space of the independent joint variables of the three link
redundant robot. Path I is the initially chosen path and Path II is the optimized path.
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Figure 12. The closed path in the figure depicts an end-effector trajectory that will produce
repeatable joint motion under pscudoinverse control. ‘The figure also shows the configura-
tion of the redundant manipulator at six different points along the trajectory.
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Figure 13. The repeatable joint trajectories of the three link redundant manipulator gen-
erated through pseudoinverse control of the end-effector trajectory in Figure 12.
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